US 2006/0107032 Al

[0072] In some embodiments, when the flash function
table or flash rodata is accessed the returning data must be
authenticated before it is used. Otherwise, an attacker could
modify the function pointers or constants stored in the flash
memory 306 to change the operation of the processor 308.
However, it is desirable to make the access latency of the
function pointer table as small as possible so that firmware
performance is not impacted. Accordingly, in some embodi-
ments the instruction cache controller 326 performs the
authentication operations and the instruction cache 328 may
provide low-latency access on a cache hit.

[0073] The flash controller 304 may receive requests from
the instruction cache controller 326, the external interface
module 322 and, as illustrated in FIG. 2, other processing
components 222 (e.g., a NIC controller). In some embodi-
ments these components arbitrate for access to the flash
controller 304.

[0074] If the instruction cache controller 326 has the grant
of the flash controller 304 when the processor 308 (via the
external interface module 322) requests arbitration from the
flash controller 304, the TPM firmware may enter failure
mode. Likewise, if the external interface module 322 has the
grant when the instruction cache controller 326 requests the
grant, the instruction cache controller 326 may assert the
error signal to the instruction multiplexer 312.

[0075] In some embodiments provisions may be made to
avoid a deadlock scenario that may otherwise occur when
the instruction cache controller 326 is prevented from
requesting arbitration because the external interface module
322 has been given the flash grant. For example, the designer
may ensure that any functions that access the external
interface module 322 are only placed in the on-chip ROM
310. Since these functions are not placed in the flash
function table 340, the likelihood of simultaneous instruc-
tion cache controller and external interface module accesses
to the flash controller may be reduced.

[0076] To support the access to the flash memory 306, the
processor 308 may be configured to stall when there is an
instruction cache miss during a flash function table (or
rodata) read. The processor 308 stalls until the data is
available. Also, on a flash instruction miss, the processor 308
may stall until the instruction is available.

[0077] To support the above accesses to the data bus 316,
the processor 308 may be configured to stall when there are
multi-cycle requests on the data bus 316. In some embodi-
ments all data bus accesses take just one cycle with the
exception of the flash function table read.

[0078] The memory map of TPM 302 may be configured
to support the secure code components discussed herein. For
example, in some embodiments unique address ranges are
assigned for the OTP memory 332, the cryptographic pro-
cessor(s) 330, the external interface module 322, the instruc-
tion cache controller 326, the instruction multiplexer 312,
the instruction ROM 310, the flash memory 306 and secure
assurance logic (not shown).

[0079] Referring now to the flowcharts of FIGS. 4-8,
various examples of operations that may be performed by
one embodiment of a system constructed in accordance with
the invention will be discussed in more detail. FIG. 4 relates
to operations that may be performed when the system is
manufactured. FIG. 5 relates to operations that may be

May 18, 2006

performed when the system boots up. FIG. 6 relates to data
and instruction access operations the system may perform.
FIGS. 7 and 8 relate to operations that may be performed
when new and/or modified functions are loaded into an
external memory.

[0080] In FIG. 4, as represented by block 402, initially a
code designer defines the original program code for the
TPM. This code may include, in addition to typical TPM
code, code that supports the secure code load mechanism
and associated secure code components. For example, the
boot code for the TPM may include provisions as discussed
below that support the secure code load mechanism. In
addition, the program code for the TPM may include func-
tion calls that are used to securely load new and/or modified
code. The secure code scheme may be designed so that a
designer is largely unaffected when coding TPM commands.
For example, in some embodiments only boot and command
switch firmware may be modified or added to support secure
code load. Also at this stage, security routines that are to be
stored in the OTP memory may be defined.

[0081] Once the code has been written, the code is pro-
cessed by a compiler to generate the machine code that is to
be loaded into data memory. Several secure code load
specific operations are discussed in conjunction with blocks
404-410. In some embodiments, several of these operations
may be implemented through the use of scripts that are
provided as extension of the compiler. Hence, the operations
described below may be partially or completely automated.
Alternatively, as discussed below, in some embodiments a
designer may have control over some of these operations.

[0082] As represented by block 404 the designer deter-
mines which functions defined in the program code will be
stored in internal memory (e.g., on-chip ROM) and will,
consequently, be entered in the on-chip function table. Here,
the designer may generate a file (e.g., romOnlyFunction-
s.txt) that specifies whether a function only resides in ROM.

[0083] In addition, the designer may generate a file (e.g.,
secureCodeCommands.txt) that contains a list of commands
that are called during secure code load. The designer may
recursively parse the call tree for these commands. All
secure code load functions that are called and are not listed
in romOnlyFunctions.txt are placed in the on-chip function
table.

[0084] The designer may then determine the function
partitioning between instruction ROM and flash memory.
For example, the designer may generate a file (flashFunc-
tions.txt) that specifies which functions reside in external
memory (e.g., flash memory). After applying flashFunction-
s.txt, the designer may calculate how much code is to be
placed in flash memory. If the code does not fit in ROM, the
designer may find infrequently used functions and allocate
them to flash memory. Functions specified in romOnlyFunc-
tions.txt are not moved to flash. The designer may thus cause
two assembly files to be generated: one for the internal ROM
and one for flash memory.

[0085] The designer also may determine the order of the
functions to be stored in on-chip ROM. In some embodi-
ments functions are ordered to maximize locality.

[0086] The designer also may determine the order of the
functions to be stored in flash memory, if applicable. Func-



